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The physics of the three sweet spots of a baseball bat is discussed and the location of the ball
impact point on the bat that leads to maximum “power” (greatest batted ball speed) is

determined.

I. INTRODUCTION

A recent article in this Journal' explained the physics of
the three sweet spots of a tennis racket (the center of per-
cussion, the node of the first harmonic, and the maximum
of the coefficient of restitution ). This article will show that
for a baseball bat, two of these sweet spots (COP and node)
are similar in nature to those found in a tennis racket, but,
unlike the tennis racket, the maximum in the COR is a very
weak function of the position of where the ball hits the bat
and therefore, the COR can be considered constant along
the bat. However, theré is an optimum point along the bat
to hit the ball to maximize the ball’s velocity after the colli-
sion. The location of this point can be calculated from the
dynamics of the collision and it is a function of the ball and
bat velocities before the impact, the mass of the ball, and
the mass and moment of inertia of the bat.

II. THE CENTER OF PERCUSSION

A bat of mass M and with initial velocity zero can be
treated as a free-body that is hit by a ball whose momentum
changes by Ap due to the interaction. The ball hits the bat at
a distance b from the bat center of mass (CM) and the bat
is normally held at a distance a from the CM. To conserve
linear momentum, Ap must equal M *V, where Vis the final
velocity of the bat CM. To conserve angular momentum
(about the CM) & *Ap must equal 7 *wyf, where I is the bat
moment of inertia (about the CM) and wf is the angular
velocity of the bat after the interaction. Because the direc-
tion of the velocity of the bat handle due to the rotation
about the CM is in the opposite direction to the direction of
the velocity of the CM, it is possible, at some point, for the
two to cancel, and there be no net translational motion at
that point. It is desirable (to a batter) to have that point be
the one where the hands grip the bat, since that will mini-
mize the initial shock or jar to the hitter. If the batter holds
the bat a distance a from the bat CM, the condition for this
cancellation to take place at the hands is ¥ = wf*a. The
distance b which will make a the effective pivot point of the
bat can be calculated by solving the above three conditions;
the result is

b=I/M*a. (1)

The value of the moment of inertia of a bat about its CM
can be measured quite easily with a torsion pendulum,? and
a typical value (for an aluminum softball bat) is 0.046 kg
m?. A second, but similar, method to find the COP point on
the bat is to pivot the bat from the handle as a physical
pendulum and measure the period of its oscillation. This
actually measures the moment of inertia above the pivot
point, and then the parallel axis theorem can be used to get
the moment about the CM which then can be used in Eq.

(n.
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For an aluminum softball bat of length 0.81 m and mass
0.825 kg, b came out to be 0.18 m beyond the CM (0.17 m
from the fat or distal end of the bat).

II1. THE NODE

When you hit the ball in the wrong place on the bat and
your hands “‘sting,” it means that you have excited a higher
harmonic of the bat’s natural oscillation. If you hit the ball
at the location of the node of this oscillation, you will not
excite it, your hands will not sting, and you will have hit the
ball at the second sweet spot. For a uniform beam, this node
is approximately } of the length of the beam from the end.
To find the node, hold the bat by two fingers, about 0.15—
0.20 m from the handle end, and strike the bat at various
locations along its length. The bat will sing out or resonate
when it is hit unless you hit it at the node. The amplitude of
the oscillation (the loudness of the sound) will increase the
further away from the node the bat is struck.

The frequency of this oscillation was measured using a
microphone, audio amplifier, and an oscilloscope. For the
aluminum bat used in these experiments, the node was 0.19
m from the end of the bat (0.16 m from the CM) and the
frequency of the oscillation was 220 Hz.

IV. THE LOCATION OF THE MAXIMUM OF THE
COEFFICIENT OF RESTITUTION

When a tennis racket’s handle is firmly clamped in a vise,
the COR varies from 0.65 near the throat to 0.2 or lower
near the tip of the racket.? This is because the racket frame
is flexible and any energy that goes into racket deformation
is lost.* A similar argument can be made for a baseball bat,
where any energy that goes into the deformation of the bat
is lost since by the time the bat “springs back,” the ball has
departed. (The ball spends 1 ms in contact with the bat’
which is much less than the half-period of the bat’s oscilla-
tion.) However, a baseball bat is 7 to 15 times as stiff as a
tennis racket, and when it is hit by the ball, it deforms much
less. Therefore, the amount of energy that goes into the bat
deformation is very small compared to the very large direct
energy lost in the ball-bat collision. If this is the case, then
the variation of this deformation energy loss with position
along the bat can be neglected, and the COR of the bat can
be considered essentially constant.

Is there then an optimum location along the bat to hit the
ball to maximize the “power”’—to maximize the rebound
velocity of the struck ball if the COR is considered to be
constant? In the literature it is said that there is such a point
and it is located at the center of percussion.®’ In Sec. V the
maximum power point will be found and it will be shown
that it is not at the COP.
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V. THE MAXIMUM “POWER” POINT

Since the ball only spends 1 ms in contact with the bat, it
is probably better to treat the bat as a free-body, rather than
an object clamped at one end.® Working in a frame of refer-
ence moving with the bat CM, it is possible to calculate the
rebound velocity of a ball that is struck. (Note this frame of
reference will continue to move after the ball-bat interac-
tion, but it will no longer be at the bat CM.) This rebound
velocity of the ball will be a function of the location on the
bat where the ball hits, and it can be maximized with re-
spect to this parameter, yielding the optimum location. To
simplify the problem, it will be assumed that the ball hits
and rebounds normal to the bat and is in the plane of the
swing, reducing this to a one-dimensional problem, even
though the bat is allowed to have a rotation about an axis
perpendicular to the plane of the swing.

The three equations below come from conservation of
linear momentum, conservation of angular momentum,
and the definition of coefficient of restitution.® The angular
velocity w is taken about the bat CM and clockwise is de-
fined as positive, as shown in Fig. 1. This is all in the frame
of reference moving with the initial velocity of the CM of
the bat and the bat is considered a free-body.

m*vi = m*yf + M *Vf,
b *m*vi + I *wi = b *m*vf + I *wf,
e*(vi — wi*b) = Vf+ wf*b — uf,

where m and M are the ball and bat mass, v and V are the
ball and bat velocity (initial and final), w is the bat angular
velocity (initial and final), and e is the coefficient of resti-
tution.

Solving these three equations for uf by eliminating Vf
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Fig. 1. Location of several points of interest on a baseball bat.
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and wf gives
of =vi — {(1 + e)*(vi — wi*b)/
[1+m/M+ (m*b*/D]1}.

Note that when wi = 0, this expression is a function of b 2
o0 it must have an extremum (maximum in this case) at
b = 0, the center of mass of the bat. This is, of course, ex-
pected, since if the bat has no initial rotational energy, a hit
at the CM will give it no final rotational energy.

To find the value of b which maximizes vf'in the general
case, the expression for vf'is differentiated with respect to b
and the result set equal to zero.

wi*h? — 2*vi*b — [wi*(M + m)*I]/(m*M) = 0.
This expression is independent of e, the COR, and can be
solved for b:

b = vi/wi + [ (vi/wi)* + I*(m + M)/ (M *m)].

It is quite clear that this point is not the COP location,
because the position is a function of the ball and bat veloc-
ity in addition to the properties of the bat. Since vi/wi is
negative, the + sign is to be used here on the square root.
The values of m, M, and I are easy to obtain in the lab, but
the values of wi and vi are determined by the hitter swing-.
ing the bat and the pitcher throwing the ball.

The value of b for a range of these parameters can be
obtained, but it is instructive to first see how b varies with
each of these variables. If

I*(m + M)*wi*/ (M *m)*vi*

is less than one, the square root can be expanded and the
result is

b=1[(r+ D*wi*k?)/vi,

where r = M /m and I has been replaced by M *k 2.

This means that b, the distance from the CM of the bat to
the impact point of the ball, increases as the mass of the bat
increases, increases as the moment of inertia of the bat in-
creases, and increases the more “wristy” is the swing. The
value of b decreases the faster the pitch is thrown and the
more it i$ a body—arm swing as opposed to a wrist swing.
Since most players rarely change their style of swing, the
main things learned from this exercise are:

(i) You should hit a fast pitch closer to your hands for
maximum power and you should try to hit a slow pitch
further out on your bat to get best results.

(ii) With a larger bat/ball mass ratio (hardball) hit the
ball out further from the CM, and with a smaller bat/ball
mass ratio (softball) hit it closer to your hands.

Table I gives the exact value of b (the contact distance
from the CM) that maximizes the outgoing ball speed, for
several bat/ball mass ratios and a number of vi/wi ratios.
The ratio of v/ (the ball speed in a frame of reference mov-
ing with the original bat CM velocity) divided by wi (the
angular velocity of the bat at contact) is a length and it is
convenient to use the bat length L as a measure of this ratio.
The results listed in Table I and displayed in Fig. 2 show
that to obtain maximum batted ball speed, the ball should
be hit somewhat closer to your hands than the COP or the
node point. As an example of this, if the bat’s effective pivot
point during the swing was betweeri the wrist and the bat-
ter’sbody (adistance L from thebat CM), and the pitched
ball and the bat CM had the same linear speed in the home
plate frame of reference, the vi/wi ratio would be 2*L. If the
bat/ball mass ratio were 6, the predicted location to hit the
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Table I. The distance from the maximum power point to the CM of the bat is given for several values of the bat/ball mass ratio and the ball speed (in
the bat frame of reference) divided by the angular velocity of the bat, in units of the bat length. This is for an aluminum softball bat of mass 0.825 kg,

moment of inertia about the CM of 0.046 kg m?, and length 0.81 m.

Bat/ball Linear speed/
mass ratio angular speed Distance from bat CM in inches Distance from bat CM in meters
5.000 1.000 7.192 0.182
5.000 1.250 5.956 0.151
5.000 1.500 5.066 0.128
5.000 1.750 4.399 0.111
5.000 2.000 3.882 0.098
5.000 2.250 3472 0.088
5.000 2.500 3.138 0.079
5.000 2.750 2.863 0.072
5.000 3.000 2.631 0.067
6.000 1.000 8.266 0.209
6.000 1.250 6.876 0.174
6.000 1.500 5.864 0.148
6.000 1.750 5.101 0.129
6.000 2.000 4.508 0.114
6.000 2.250 4.035 0.102
6.000 2.500 3.650 0.092
6.000 2.750 3.331 0.084
6.000 3.000 3.062 0.078
7.000 1.000 9.312 0.236
7.000 1.250 7.777 0.197
7.000 1.500 6.650 0.168
7.000 1.750 5.795 0.147
7.000 2.000 5.128 0.130
7.000 2.250 4.594 0.116
7.000 2.500 4.159 0.105
7.000 2.750 3.797 0.096
7.000 3.000 3.492 0.088

ball would be 0.114 m beyond the bat CM, while the COP
and node to CM distances are 0.18 and 0.16 m, respective-
ly. For “fungo” hitting (ball is at rest in the home plate
frame), the point would be out beyond the COP or node,
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Fig. 2. Location of the ball impact point on a bat that will produce maxi-
mum “power”’ (batted ball speed).
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since the vi/wi ratio would be approximately L. However,
for this type of hitting, a lighter bat with a different weight
distribution is normally used.®'°

If there is any appreciable energy loss due to bat defor-
mation, the point of maximum power will move outward
toward the node if the bat acts as if it were a free-body
(which is what is assumed in this article) and the point will
move toward the hands if the bat acts as if it were clamped
firmly at the handle.

Throughout this article, SI units have been used, with
the exception of the final column for b in Table I, where
both inches and SI were employed, since the official rules of
baseball are specified in English units.
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APPENDIX

The value of & that maximizes vfis independent of ¢, the
coefficient of restitution. If e = 1, the collision is elastic and
the final kinetic energy of the ball and the bat will equal the
initial kinetic energy, including the rotational energy of the
bat (*1 *1i%). For such a collision, the value of yf should
maximize when the bat has no final rotational energy
(wf=0) and it has only translational energy. But what
happens in an inelastic collision? Can wf be set equal to
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zero to maximize yf? Taking the original three equations,
letting wf = 0, and solving for b gives

b=vi*(1 4+ e)/2*wi + ({[vi*(1 + e)/2*wi)?
+ [T *(m + M)*wi?1/(e*M *m)}'/?).

This reduces to the previously obtained value of b only for
elastic collisions (e = 1), so the condition that uf be a
maximum leads to no rotational energy left in the bat only
for elastic collisions.
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A class of exactly soluble N-particle Hamiltonians is presented. The matrix representation of
these Hamiltonians, which consists of one- and two-body interactions, is block diagonal. The
blocks consist of a finite-dimensional matrices which can be easily diagonalized. An example for a

system with two particles is discussed.

I. INTRODUCTION

The discussion of the solution of the many-body Schro-
dinger equation is one of the thorniest aspects of the teach-
ing of introductory quantum mechanics. Part of the prob-
lem is due to the lack of exactly soluble Hamiltonians with
two-body interactions. Thus one is usually forced to intro-
duce fundamental concepts together with the explanation
of the particular details of approximate methods, such as
the Hartree—Fock formalism. This tends to cause confu-
sion on the part of the students, who very often get lost in
the mathematical manipulations.

To separate the fundamental concepts from the discus-
sion of the mathematical details of a particular method of
approximation it would be advantageous to use Hamilto-
nians which are exactly soluble. In addition, one would
hope that such systems contain two-body interactions but
are relatively easy to solve. In this paper we present one
class of many-body Hamiltonians which conforms to these
characteristics. They consist of one- and two-particle inter-
actions, where the latter have been chosen to render the
problem easily solvable. However, they retain enough com-
plexity to be effective in the explanation of many of the
fundamental properties of N-particle systems, such as the
energy splittings between different total spin eigenstates.
These Hamiltonians lead to exact solutions because their
matrix representations, in the appropriate basis sets, turn
out to be block diagonal, where the blocks consist of finite-
dimensional submatrices.
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The paper is organized as follows. In Sec. II we postulate
these Hamiltonians and discuss their general form. In Sec.
ITI we consider an example consisting of a system with two
particles. The conclusions are presented in Sec. IV.

II. GENERAL FORM OF THE HAMILTONIANS

Let us consider a system consisting of N particles which,
for definiteness, we will take to be spin-} fermions. In gen-
eral, a Hamiltonian consisting of one- and two-body inter-
actions can be written in the form

R N N

u=1 n#EV

‘where ¢ and v run over the coordinates of the N particles.

Here, 4 is the one-particle Hamiltonian, whereas g corre-
sponds to the two-body interaction.

Consider the set of single-particle states |, (#)) which
is complete and orthonormal, consisting of the eigenstates
of the one-particle Hamiltonian. In other words, we have

h() |8, (1)) = €,18, (1)) ,

where the €, are the single-particle energies. With these
single-particle states we can construct a complete basis for
the N-particle Hilbert space. For convenience, we will use
the basis obtained by taking Cartesian products' of the
|, (1£)), i.e., the N-particle basis functions have the form
|¢., (1)@, (2)-¢, (N)). Therefore, any admissible N-
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